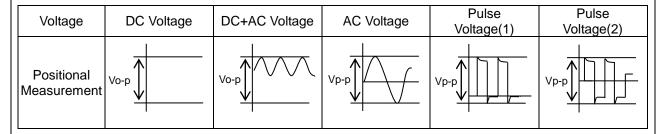


Type SA
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Oct. 2018, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

⚠ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type SA used for General Electric equipment.

Type SA is Safety Standard Certified disc ceramic capacitor of Class X1, Y2.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
ENEC	ENG0204 44	40042000	X1:300
(VDE)	EN60384-14	40042990	Y2:300
CQC	IEC60384-14	CQC15001137840	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range $-40 \sim +125$ °C

2-2. Rated Voltage X1:AC300V(r.m.s.) Y2:AC300V(r.m.s.)

2-3. Part number configuration

ex.) DE2 B3 SA 471 K A3 B X02F
Product Temperature code characteristic name Type Capacitance tolerance code style code specification

• Product code

DE2 denotes class X1,Y2.

•Temperature characteristic

Code	Temperature characteristic				
1X	SL				
B3	В				
E3	Е				

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type SA.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code Lead style			
A*	Vertical crimp long type		
J*	Vertical crimp short type		
N*	Vertical crimp taping type		

^{*} Please refer to [Part number list].

• Packing style code

Code	Packing type			
В	Bulk type			
Α	Ammo pack taping type			

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification			
	Rated voltage: X1:AC300V(r.m.s.) Y2:AC300V(r.m.s.)			
X02F	 Halogen Free (Br ≤ 900ppm, Cl ≤ 900ppm) Br + Cl ≤ 1500ppm			

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(SA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : SA

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

Capacitance tolerance : Code Class code and Rated voltage mark : **X1 300~**

Y2 300~

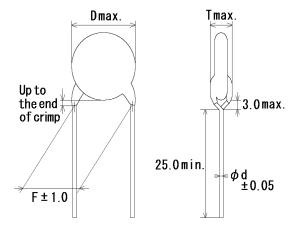
Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

 Feb./Mar. → 2
 Aug./Sep. → 8

 Apr./May. → 4
 Oct./Nov. → O

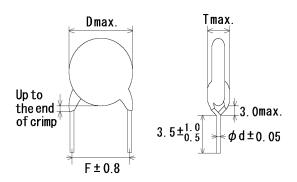
 Jun./Jul. → 6
 Dec./Jan. → D


Company name code : M15 (Made in Thailand)

(Example)

SA 471K X1 300~ Y2 300~ 5D (M15

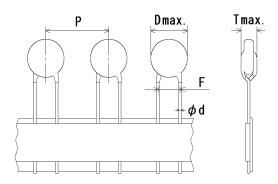
4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

T.C. Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d code (pt (px										UIIIL .	ППП	
D T F d Code (pc SL 10 ±10% DE21XSA100KA3BX02F 7.0 4.0 7.5 0.6 A3 25	тс	Сар.	o. Cap.	Сар.	Cap. Customer Part Number Murata Part N	Murata Part Number	Dir	imension (mm)			Lead	Pack
SL 15 ± 10% DE21XSA150KA3BX02F 6.0 5.0 7.5 0.6 A3 50 SL 22 ± 10% DE21XSA220KA3BX02F 6.0 4.0 7.5 0.6 A3 50 SL 33 ± 10% DE21XSA330KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 47 ± 10% DE21XSA470KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 68 ± 10% DE21XSA680KA3BX02F 8.0 4.0 7.5 0.6 A3 25 B 100 ± 10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 220 ± 10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ± 10% DE2B3SA31KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ± 10% DE2B3SA471KA3BX02F	1.0.	(pF)	tol.	Oustomer Fait Number	Warata Fart Number	D	D T F d		d	code	(pcs)	
SL 22 ±10% DE21XSA220KA3BX02F 6.0 4.0 7.5 0.6 A3 50 SL 33 ±10% DE21XSA330KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 47 ±10% DE21XSA470KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 68 ±10% DE21XSA680KA3BX02F 8.0 4.0 7.5 0.6 A3 25 B 100 ±10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 150 ±10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F <	SL	10	±10%		DE21XSA100KA3BX02F	7.0	4.0	7.5	0.6	А3	250	
SL 33 ±10% DE21XSA330KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 47 ±10% DE21XSA470KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 68 ±10% DE21XSA680KA3BX02F 8.0 4.0 7.5 0.6 A3 25 B 100 ±10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 220 ±10% DE2B3SA221KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA152MA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 2200 <td>SL</td> <td>15</td> <td>±10%</td> <td></td> <td>DE21XSA150KA3BX02F</td> <td>6.0</td> <td>5.0</td> <td>7.5</td> <td>0.6</td> <td>А3</td> <td>500</td>	SL	15	±10%		DE21XSA150KA3BX02F	6.0	5.0	7.5	0.6	А3	500	
SL 47 ±10% DE21XSA470KA3BX02F 7.0 4.0 7.5 0.6 A3 25 SL 68 ±10% DE21XSA680KA3BX02F 8.0 4.0 7.5 0.6 A3 25 B 100 ±10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 150 ±10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA222MA3BX02F 8.0 4.0 7.5 0.6 A3 25 DE2E3SA332MA3BX02F	SL	22	±10%		DE21XSA220KA3BX02F	6.0	4.0	7.5	0.6	А3	500	
SL 68 ±10% DE21XSA680KA3BX02F 8.0 4.0 7.5 0.6 A3 25 B 100 ±10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 150 ±10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA31KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 6.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA152MA3BX02F 7.0 4.0 7.5 0.6 A3 25 DE2E3SA322MA3BX02F 7.0 4.0 7.5 0.6 A3 25 DE2E3SA472MA3BX02F 9.0 4.0 7.5	SL	33	±10%		DE21XSA330KA3BX02F	7.0	4.0	7.5	0.6	А3	250	
B 100 ±10% DE2B3SA101KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 150 ±10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 220 ±10% DE2B3SA221KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 6.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA222MA3BX02F 8.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA32MA3BX02F 9.0 4.0 7.5 0.6 A3 25 DE2E3SA472MA3BX02F	SL	47	±10%		DE21XSA470KA3BX02F	7.0	4.0	7.5	0.6	А3	250	
B 150 ±10% DE2B3SA151KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 220 ±10% DE2B3SA221KA3BX02F 6.0 5.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 6.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA152MA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 3300 ±20% DE2E3SA322MA3BX02F 8.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA472MA3BX02F 9.0 4.0 7.5 0.6 A3 25 DE2E3SA472MA3BX02F <td>SL</td> <td>68</td> <td>±10%</td> <td></td> <td>DE21XSA680KA3BX02F</td> <td>8.0</td> <td>4.0</td> <td>7.5</td> <td>0.6</td> <td>А3</td> <td>250</td>	SL	68	±10%		DE21XSA680KA3BX02F	8.0	4.0	7.5	0.6	А3	250	
B 220 ±10% DE2B3SA221KA3BX02F 6.0 5.0 7.5 0.6 A3 50 B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 6.0 4.0 7.5 0.6 A3 50 E 1500 ±20% DE2E3SA152MA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA222MA3BX02F 8.0 4.0 7.5 0.6 A3 25 E 3300 ±20% DE2E3SA332MA3BX02F 9.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA472MA3BX02F 10.0 5.0 7.5 0.6 A3 25	В	100	±10%		DE2B3SA101KA3BX02F	6.0	4.0	7.5	0.6	А3	500	
B 330 ±10% DE2B3SA331KA3BX02F 6.0 4.0 7.5 0.6 A3 50 B 470 ±10% DE2B3SA471KA3BX02F 7.0 4.0 7.5 0.6 A3 25 B 680 ±10% DE2B3SA681KA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 1000 ±20% DE2E3SA102MA3BX02F 6.0 4.0 7.5 0.6 A3 50 E 1500 ±20% DE2E3SA152MA3BX02F 7.0 4.0 7.5 0.6 A3 25 E 2200 ±20% DE2E3SA322MA3BX02F 8.0 4.0 7.5 0.6 A3 25 E 3300 ±20% DE2E3SA332MA3BX02F 9.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA472MA3BX02F 10.0 5.0 7.5 0.6 A3 25	В	150	±10%		DE2B3SA151KA3BX02F	6.0	4.0	7.5	0.6	А3	500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	220	±10%		DE2B3SA221KA3BX02F	6.0	5.0	7.5	0.6	А3	500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	330	\pm 10%		DE2B3SA331KA3BX02F	6.0	4.0	7.5	0.6	А3	500	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	470	±10%		DE2B3SA471KA3BX02F	7.0	4.0	7.5	0.6	А3	250	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	680	$\pm 10\%$		DE2B3SA681KA3BX02F	7.0	4.0	7.5	0.6	А3	250	
E 2200 ±20% DE2E3SA222MA3BX02F 8.0 4.0 7.5 0.6 A3 25 E 3300 ±20% DE2E3SA332MA3BX02F 9.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA472MA3BX02F 10.0 5.0 7.5 0.6 A3 25	Е	1000	$\pm 20\%$		DE2E3SA102MA3BX02F	6.0	4.0	7.5	0.6	А3	500	
E 3300 ±20% DE2E3SA332MA3BX02F 9.0 4.0 7.5 0.6 A3 25 E 4700 ±20% DE2E3SA472MA3BX02F 10.0 5.0 7.5 0.6 A3 25	Е	1500	$\pm 20\%$		DE2E3SA152MA3BX02F	7.0	4.0	7.5	0.6	А3	250	
E 4700 ±20% DE2E3SA472MA3BX02F 10.0 5.0 7.5 0.6 A3 25	Е	2200	$\pm 20\%$		DE2E3SA222MA3BX02F	8.0	4.0	7.5	0.6	А3	250	
	Е	3300	±20%		DE2E3SA332MA3BX02F	9.0	4.0	7.5	0.6	А3	250	
PEGEGGA400MA3DV00E 45.0 5.0 7.5 0.0 A3 46	Е	4700	±20%		DE2E3SA472MA3BX02F	10.0	5.0	7.5	0.6	А3	250	
E 1000U ±20% DE2E3SA103MA3BX02F 15.0 5.0 7.5 0.6 A3 10	Е	10000	$\pm 20\%$		DE2E3SA103MA3BX02F	15.0	5.0	7.5	0.6	А3	100	

·Vertical crimp short type (Lead code: J*)



Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).

Please see the following list about details.

Unit: mm Pack Dimension (mm) Lead Cap. Cap. T.C. Customer Part Number Murata Part Number qty. (pF) tol. code F D Т d (pcs) SL DE21XSA100KJ3BX02F 7.0 7.5 J3 10 $\pm 10\%$ 4.0 0.6 500 SL 15 $\pm 10\%$ DE21XSA150KJ3BX02F 6.0 5.0 7.5 0.6 J3 500 SL 22 $\pm 10\%$ DE21XSA220KJ3BX02F 6.0 4.0 7.5 0.6 J3 500 DE21XSA330KJ3BX02F 7.0 7.5 J3 SI 33 4.0 0.6 500 $\pm 10%$ SL 47 DE21XSA470KJ3BX02F 7.0 7.5 J3 500 $\pm 10\%$ 4.0 0.6 SL 68 $\pm 10\%$ DE21XSA680KJ3BX02F 8.0 4.0 7.5 0.6 J3 500 100 4.0 7.5 В $\pm 10\%$ DE2B3SA101KJ3BX02F 6.0 0.6 J3 500 В 150 $\pm 10\%$ DE2B3SA151KJ3BX02F 6.0 4.0 7.5 J3 500 0.6 В 220 $\pm 10\%$ DE2B3SA221KJ3BX02F 6.0 5.0 7.5 J3 500 0.6 В 330 $\pm 10\%$ DE2B3SA331KJ3BX02F 6.0 4.0 7.5 0.6 J3 500 В 470 $\pm 10\%$ DE2B3SA471KJ3BX02F 7.0 4.0 7.5 0.6 J3 500 В 7.0 7.5 680 $\pm 10\%$ DE2B3SA681KJ3BX02F 4.0 0.6 J3 500 ±20% 7.5 Ε 1000 DE2E3SA102MJ3BX02F 6.0 4.0 J3 500 0.6 4.0 7.5 J3 Ε 1500 7.0 0.6 500 $\pm 20\%$ DE2E3SA152MJ3BX02F Ε 2200 $\pm 20\%$ DE2E3SA222MJ3BX02F 8.0 4.0 7.5 0.6 J3 500 Ε 3300 $\pm 20\%$ DE2E3SA332MJ3BX02F 9.0 4.0 7.5 0.6 J3 500 Ε 4700 $\pm 20\%$ DE2E3SA472MJ3BX02F 10.0 7.5 0.6 J3 500 5.0 10000 Ε DE2E3SA103MJ3BX02F 15.0 5.0 7.5 0.6 J3 200 $\pm 20\%$

Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

										Unit : I	mm
T.C.	- C Cap. Ca		Customer Part Number	Murata Part Number	Dimension (mm)					Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	IVIUIAIA FAIT INUIIIDEI	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±10%		DE21XSA100KN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	15	±10%		DE21XSA150KN3AX02F	6.0	5.0	7.5	0.6	15.0	N3	1000
SL	22	±10%		DE21XSA220KN3AX02F	6.0	4.0	7.5	0.6	15.0	N3	1000
SL	33	±10%		DE21XSA330KN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	47	±10%		DE21XSA470KN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	68	±10%		DE21XSA680KN3AX02F	8.0	4.0	7.5	0.6	15.0	N3	1000
В	100	±10%		DE2B3SA101KN3AX02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	150	±10%		DE2B3SA151KN3AX02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	220	\pm 10%		DE2B3SA221KN3AX02F	6.0	5.0	7.5	0.6	15.0	N3	1000
В	330	\pm 10%		DE2B3SA331KN3AX02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	470	\pm 10%		DE2B3SA471KN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
В	680	\pm 10%		DE2B3SA681KN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
Е	1000	$\pm 20\%$		DE2E3SA102MN3AX02F	6.0	4.0	7.5	0.6	15.0	N3	1000
Е	1500	$\pm 20\%$		DE2E3SA152MN3AX02F	7.0	4.0	7.5	0.6	15.0	N3	1000
Е	2200	±20%		DE2E3SA222MN3AX02F	8.0	4.0	7.5	0.6	15.0	N3	1000
Е	3300	±20%		DE2E3SA332MN3AX02F	9.0	4.0	7.5	0.6	15.0	N3	1000
Е	4700	±20%		DE2E3SA472MN3AX02F	10.0	5.0	7.5	0.6	15.0	N3	1000
Е	10000	±20%		DE2E3SA103MN7AX02F	15.0	5.0	7.5	0.6	30.0	N7	400

	ecification and test	methods		ierence only					
No.	lte		Speci	fication	Test method				
1	Appearance and dimensions								
	••		form and dimen		for visible evidence of defect.				
				Part number list].	Dimensions should be measured with slide calipe				
2	Marking	I Date: 1 1	To be easily leg	ible.	The capacitor should be inspected by naked eyes				
3	Dielectric strength	Between lead wires	No failure.		The capacitor should not be damaged when AC2600V(r.m.s.) <50/60Hz> is applied between the lead wires for 60 s.				
4 5 6	Body insulation First, the terminals of the capacitor connected together. Then, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4mm from each terminal. Then, the capacitor should be inser container filled with metal balls of all diameter. Finally, AC2600V (r.m.s.) applied for 60 s between the capacitor and metal balls. Insulation Resistance (I.R.) 10000MΩ min. The insulation resistance should be with DC500±50V within 60±5 s of cl The voltage should be applied to the through a resistor of 1MΩ. Capacitance Within specified tolerance. The capacitance should be measured the through a resistance should be measured the dissipation factor should be measured to the dissipation factor should be displaced to the displaced to t								
			Char. E : Within (Temp. range :	-25 to +85°C) Step Temp.(°C) 20	1 2 3 4 5 0±2 -25±2 20±2 85±2 20±2				
8	Active flammabilit		The cheese-clo	th should not be on	The capacitors should be individually wrapped in a least one but more than two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 s. The UAc should be maintained for 2min after the last discharge.				
					C1,2 : 1μ F±10%, C3 : 0.033μ F±5% 10kV L1 to L4 : $1.5m$ H±20% 16A Rod core choke R : 100Ω ±2%, Ct : 3μ F±5% 10kV UAc : UR ±5% UR : Rated working voltage Cx : Capacitor under test F : Fuse, Rated 10A Ut : Voltage applied to Ct				
					5kV SkV				
					time				

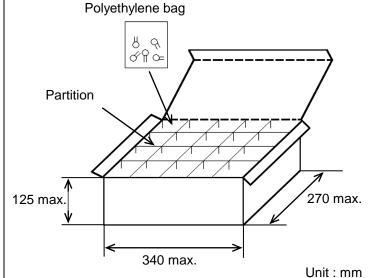
			Reference only	
No.	Item	า	Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s.
		Bending		With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the
				end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of
				about 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend
				in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance D.F.	Within the specified tolerance. 2.5% max.	supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.
11	Solderability of lead	ds	Lead wire should be soldered with	The lead wire of a capacitor should be dipped into
			uniformly coated on the axial direction over 3/4 of the circumferential direction.	a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: 245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance change	Within ±10%	Immersion time : 3.5 ± 0.5 s (In case of $260\pm5^{\circ}\text{C}$: 10 ± 1 s)
		I.R. Dielectric	1000MΩ min. Per item 3	The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.
		strength	Fer item 3	1.5 to 2.0mm from the root of lead wires.
		- and a significant		Thermal Capacitor insulating
				1.5 to 2.0mm Molten solder
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h
				before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 s.
		Dielectric	Per item 3	
		strength		Thermal insulating Capacitor to 2.0mm 1.5 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h
				before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 t 2 h at *1 room condition.

			Reference only	
No.	Item	า	Specification	Test method
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.
15	Passive flammabili	ty	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 10mm thick board
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL : Within $\pm 5\%$ Char. B : Within $\pm 10\%$ Char. E : Within $\pm 15\%$ Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000M Ω min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±15% Char. SL: 2.5% max. Char. B, E: 5.0% max. 3000MΩ min. Per item 3 C. Relative humidity: 45 to 75%. Atmospherical defects the second se	to 2 h at *1 room condition. Apply AC300V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1 room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

lo.	Item)	Specification			Test n	nethod	
8	Life	Appearance	No marked defect.	Impuls	se volta		.5.1100	
	0	Capacitance	Within ±20%				should be	subjected to
		change	==0 /0					the capacito
		I.R.	3000MΩ min.	are ap	plied to	o life test.		
		Dielectric	Per item 3		(%)			
		strength		1	90 (%)	a		$= 1.2 \mu \text{s} = 1.67 \text{T}$
					50 —		Time to half-va	lue (T2) = 50μ s
					30	^	_	
				'	, <u>구</u>	1	t	
						[→] T2		
				The c	anacito	rs are placed	d in a circul	ating air over
						of 1000 h.	a iii a oiioai	ating an over
							ntained at a	a temperature
								of 50% max
				Throu	ghout t	he test, the o	capacitors a	are subjected
								nating voltage
								e each hour th
								.s.) for 0.1 s.
				Pre-tre	eatmer	t : Capacito		
								d apply the Os then place
							n condition	
							nitial meas	
							apply to C	
				Post-t	reatme	nt :Capacito	r should be	stored for
							at *1room c	
9	Temperature and	Appearance	No marked defect.	The ca	apacito			5 temperatu
	immersion cycle	Capacitance		cycles	, then	consecutively	y to 2 imme	ersion cycles.
		change	Char. B: Within ±10%					
			Char. E: Within ±20%	<temp< td=""><td>peratur</td><td>e cycle></td><td></td><td></td></temp<>	peratur	e cycle>		
		D.F.	Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min. Per item 3	5	Step	Tempera	ture(°C)	Time
					1	-40+	0/-3	30 min
		I.R.			2	Room		3 min
		Dielectric			3	+125-		30 min
		strength			4	Room	temp.	3 min
							Cycle tir	ne:5 cycles
				<lmm< td=""><td>ersion</td><td>cycle></td><td></td><td></td></lmm<>	ersion	cycle>		
				Step	Temp	perature(°C)	Time	Immersion
					-			water Clean
				1	+6	65+5/-0	15 min	water
								Salt
				2		0±3	15 min	water
						1.	Cycle tir	ne:2 cycles
							Cycle til	ne.z cycles
				Pre-tre	eatmer	nt : Capacito	r should be	stored at
								d apply the
						AC2000	V(r.m.s.) 60	s then place
						at *1roon	n condition	for 24±2 h
							nitial meas	
							apply to C	
				Post-t	reatme	nt : Capacit		
			°C, Relative humidity: 45 to 75%,				it *1room co	mullion.

6.Packing specification


•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity × n

The size of packing case and packing way

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

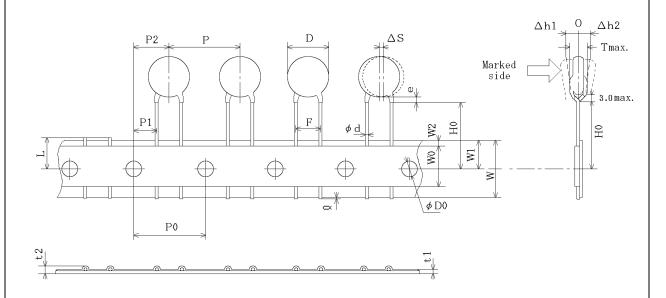
- •Ammo pack taping type (Packing style code : A)
 - · The tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.
- There should be 3 pitches and over without capacitors in leader and trailer.

 The size of packing case and packing way

 Position of label

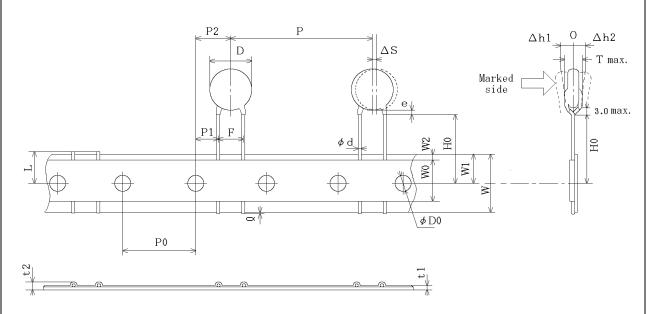
 340 max.

 Unit: mm


 Capacitor

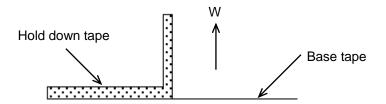
 Hold down tape upper

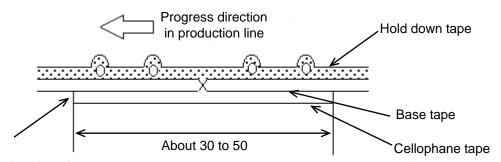
7. Taping specification


7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm

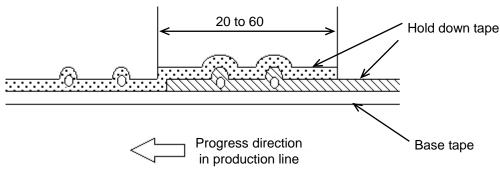
Item	Code	Dimensions	Remarks
Pitch of component	Р	15.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	Deviation of manager discretion
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	Н0	18.0± ^{2.0} ₀	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φ D 0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	2.0	
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].


Vertical crimp taping type < Lead code : N7 > Pitch of component 30.0mm /Lead spacing 7.5mm


	1	T	Unit . mm	
Item	Code	Dimensions	Remarks	
Pitch of component	Р	30.0±2.0		
Pitch of sprocket hole	P0	15.0±0.3		
Lead spacing	F	7.5±1.0		
Length from hole center to component center	P2	7.5±1.5	Deviation of progress direction	
Length from hole center to lead	P1	3.75±1.0		
Body diameter	D	Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom	H0	10.012.0		
planes	по	$18.0\pm_0^{2.0}$		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φ D 0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3	They include hold down tape thickness.	
Total thickness, tape and lead wire	t2	1.5 max.		
Deviation across tape, front	∆h1	0.0		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DE2E3SA102MJ3BX02F	DE2B3SA681KJ3BX02F	DE2E3SA222MJ3BX02F	DE21XSA330KJ3BX02F
DE21XSA680KJ3BX02F	DE2E3SA332MJ3BX02F	DE21XSA100KJ3BX02F	DE2B3SA151KJ3BX02F
DE2B3SA221KJ3BX02F	DE2B3SA471KJ3BX02F	DE2B3SA101KJ3BX02F	DE2B3SA331KJ3BX02F
DE21XSA150KJ3BX02F	DE21XSA470KJ3BX02F	DE2E3SA152MJ3BX02F	DE21XSA220KJ3BX02F
DE21XSA150KN3AX02F	DE2B3SA331KN3AX02F	DE2E3SA152MA3BX02F	DE2B3SA221KN3AX02F
DE21XSA470KN3AX02F	DE2B3SA331KA3BX02F	DE21XSA220KN3AX02F	DE2B3SA151KA3BX02F
DE21XSA680KA3BX02F	DE2B3SA681KN3AX02F	DE21XSA470KA3BX02F	DE2E3SA332MA3BX02F
DE21XSA100KA3BX02F	DE2B3SA471KN3AX02F	DE2E3SA222MA3BX02F	DE2B3SA101KN3AX02F
DE21XSA330KN3AX02F	DE2B3SA471KA3BX02F	DE2B3SA681KA3BX02F	DE21XSA220KA3BX02F
DE21XSA100KN3AX02F	DE2B3SA151KN3AX02F	DE2B3SA101KA3BX02F	DE2E3SA222MN3AX02F
DE2E3SA152MN3AX02F	DE2E3SA332MN3AX02F	DE21XSA150KA3BX02F	DE21XSA680KN3AX02F
DE2E3SA102MA3BX02F	DE2B3SA221KA3BX02F	DE21XSA330KA3BX02F	DE2E3SA102MN3AX02F
DE2E3SA103MN7AX02F	DE2E3SA103MA3BX02F	DE2E3SA103MJ3BX02F	DE2E3SA472MN3AX02F
DE2E3SA472MJ3BX02F	DE2E3SA472MA3BX02F		