- 15-V Digital or ± 7.5-V Peak-to-Peak Switching
- 125- Ω Typical On-State Resistance for 15-V Operation
- Switch On-State Resistance Matched to Within 5Ω Over 15-V Signal-Input Range
- On-State Resistance Flat Over Full Peak-to-Peak Signal Range
- High On/Off Output-Voltage Ratio: 80 dB Typical at $f_{\text {is }}=10 \mathrm{kHz}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$
- High Degree of Linearity: $<0.5 \%$ Distortion Typical at $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}, \mathrm{V}_{\text {is }}=5 \mathrm{~V} \mathrm{p}-\mathrm{p}$, $V_{D D}-V_{S S} \geq 10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$
- Extremely Low Off-State Switch Leakage, Resulting in Very Low Offset Current and High Effective Off-State Resistance: 10 pA Typical at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Extremely High Control Input Impedance (Control Circuit Isolated From Signal Circuit): $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches: - 50 dB Typical at $\mathrm{f}_{\text {is }}=8 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- Matched Control-Input to Signal-Output Capacitance: Reduces Output Signal Transients
- Frequency Response, Switch on $=\mathbf{4 0} \mathbf{~ M H z}$ (Typical)
- $\mathbf{1 0 0 \%}$ Tested for Quiescent Current at 20 V
- 5-V, 10-V, and 15-V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, Standard Specifications for Description of B-Series CMOS Devices
- Applications:
- Analog Signal Switching/Multiplexing: Signal Gating, Modulator, Squelch Control, Demodulator, Chopper, Commutating Switch
- Digital Signal Switching/Multiplexing
- Transmission-Gate Logic Implementation
- Analog-to-Digital and Digital-to-Analog Conversion
- Digital Control of Frequency, Impedance, Phase, and Analog-Signal Gain
description/ordering information
ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - F	Tube	CD4066BF	CD4066BF
	PDIP - E	Tube	CD4066BE	CD4066BE
	SOIC - M	Tube	CD4066BM	CD4066BM
		Tape and reel	CD4066BM96	
	SOP - NS	Tape and reel	CD4066BNSR	CD4066B
	TSSOP - PW	Tape and reel	CD4066BPWR	CM066B

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

description/ordering information (continued)

CD4066B is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with the CD4016B, but exhibits a much lower on-state resistance. In addition, the on-state resistance is relatively constant over the full input-signal range.

The CD4066B consists of four bilateral switches, each with independent controls. Both the p and the n device in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 1, the well of the n -channel device on each switch is tied to either the input when the switch is on or to V_{SS} when the switch is off. This configuration eliminates the variation of the switch-transistor threshold voltage with input signal and, thus, keeps the on-state resistance low over the full operating-signal range.

The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage and more constant on-state impedance over the input-signal range. However, for sample-and-hold applications, the CD4016B is recommended.

\dagger All control inputs are protected by CMOS protection network.
NOTES: A. All p substrates are connected to $V_{D D}$.
B. Normal operation control-line biasing: Switch on (logic 1), $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}$; Switch off (logic 0), $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{SS}}$
C. Signal-level range: VSS $\leq \mathrm{V}_{\text {is }} \leq \mathrm{V}_{\mathrm{DD}}$

Figure 1. Schematic Diagram of One of Four Identical Switches and Associated Control Circuitry

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

DC supply-voltage range, (V_{DD}) (Voltages referenced to V_{SS} terminal) \ldots.

Package thermal impedance, θ_{JA} (see Note 1): E package $80^{\circ} \mathrm{C} / \mathrm{W}$
M package .. $86^{\circ} \mathrm{C} / \mathrm{W}$
NS package $76^{\circ} \mathrm{C} / \mathrm{W}$
PW package $113^{\circ} \mathrm{C} / \mathrm{W}$
Lead temperature (during soldering):
At distance $1 / 16 \pm 1 / 32$ inch $(1,59 \pm 0,79 \mathrm{~mm})$ from case for 10 s max $\ldots .265^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions

	MIN	MAX	UNIT
$V_{\text {DD }}$ Supply voltage	3	18	V
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature	-55	125	${ }^{\circ} \mathrm{C}$

SCHS051B - REVISED AUGUST 2002
electrical characteristics

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \mathrm{V}_{\text {IN }} \\ & \text { (V) } \end{aligned}$	VDD (V)	LIMITS AT INDICATED TEMPERATURES						UNIT	
		$-55^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$				
		TYP						MAX				
IDD	Quiescent device current			0, 5	5	0.25	0.25	7.5	7.5	0.01	0.25	$\mu \mathrm{A}$
			0, 10	10	0.5	0.5	15	15	0.01	0.5		
			0,15	15	1	1	30	30	0.01	1		
			0, 20	20	5	5	150	150	0.02	5		
Signal Inputs ($\mathrm{V}_{\text {is }}$) and Output ($\mathrm{V}_{\text {OS }}$)												
ron	On-state resistance (max)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { returned } \\ & \text { to } \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \hline \end{aligned}$		5	800	850	1200	1300	470	1050	Ω	
				10	310	330	500	550	180	400		
				15	200	210	300	320	125	240		
$\Delta r_{\text {on }}$	On-state resistance difference between any two switches	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}$		5					15		Ω	
				10					10			
				15					5			
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {is }(p-p)}=5 \mathrm{~V} \\ & (\text { sine wave centered on } 0 \mathrm{~V} \text {), } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{f}_{\mathrm{is}}=1 \mathrm{kHz} \text { sine wave } \end{aligned}$							0.4		\%	
	-3-dB cutoff frequency (switch on)	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{is}(\mathrm{p}-\mathrm{p})}=5 \mathrm{~V}$ (sine wave centered on 0 V), $R_{L}=1 \mathrm{k} \Omega$							40		MHz	
	-50-dB feed-through frequency (switch off)	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{is}(\mathrm{p}-\mathrm{p})}=5 \mathrm{~V}$ (sine wave centered on 0 V),$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$							1		MHz	
$\mathrm{l}_{\text {is }}$	Input/output leakage current (switch off) (max)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}, \mathrm{~V}_{\text {is }}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V} ; \\ & \text { and } \\ & \mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}, \mathrm{~V}_{\text {is }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=18 \mathrm{~V} \end{aligned}$		18	± 0.1	± 0.1	± 1	± 1	$\pm 10^{-5}$	± 0.1	$\mu \mathrm{A}$	
	$-50-\mathrm{dB}$ crosstalk frequency	$\begin{aligned} & \begin{array}{l} V_{C}(A)=V_{D D}=5 V, \\ V_{C}(B)=V_{S S}=-5 V \\ V_{i s}(A)=5 V_{p-p}, 50-\Omega \text { source, } \\ R_{L}=1 \mathrm{k} \Omega \end{array} \\ & \hline \end{aligned}$							8		MHz	
$t_{\text {pd }}$	Propagation delay (signal input to signal output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\text {is }}=10 \mathrm{~V} \\ & \text { (square wave centered on } 5 \mathrm{~V} \text {), } \\ & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{aligned}$		5					20	40	ns	
				10					10	20		
				15					7	15		
$\mathrm{C}_{\text {is }}$	Input capacitance	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{C}=V_{S S}=-5 \mathrm{~V} \end{aligned}$							8		pF	
$\mathrm{C}_{\text {OS }}$	Output								8			
$\mathrm{C}_{\text {ios }}$	Feedthrough								0.5			

electrical characteristics (continued)

CHARACTERISTIC		TEST CONDITIONS	$V_{D D}$(V)	LIMITS AT INDICATED TEMPERATURES						UNIT			
		$-55^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$						
		TYP					MAX						
Control (V_{C})													
VILC	Control input, low voltage (max)		$\begin{aligned} & \left\\|\\|_{\text {is }}<10 \mu \mathrm{~A},\right. \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}}, \text { and } \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	5	1	1	1	1		1	V		
		10		2	2	2	2		2				
		15		2	2	2	2		2				
$\mathrm{V}_{\mathrm{IHC}}$	Control input, high voltage	See Figure 6	5	3.5 (MIN)						V			
			10	7 (MIN)									
			15	11 (MIN)									
IIN	Input current (MAX)	$\begin{aligned} & \mathrm{V}_{\text {is }} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S} \end{aligned}$	18	± 0.1	± 0.1	± 1	± 1	$\pm 10^{-5}$	± 0.1	$\mu \mathrm{A}$			
	Crosstalk (control input to signal output)	$\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}$ (square wave), $\mathrm{t}_{\mathrm{r}, \mathrm{t}}=20 \mathrm{~ns}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10					50		mV			
	Turn-on and turn-off propagation delay	$\begin{aligned} & V_{I N}=V_{D D}, t_{r}, t_{f}=20 \mathrm{~ns}, \\ & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \end{aligned}$	5					35	70	ns			
			10					20	40				
			15					15	30				
	Maximum control input repetition rate	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V} \text { (square wave } \\ & \text { centered on } 5 \mathrm{~V} \text {), } \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{~V}_{\text {OS }}=1 / 2 \mathrm{~V}_{\text {OS }} \text { at } 1 \mathrm{kHz} \end{aligned}$	5					6		MHz			
			10					9					
			15					9.5					
$\mathrm{C}_{\text {I }}$	Input capacitance							5	7.5	pF			

switching characteristics

$V_{D D}$ (V)	SWITCH INPUT						SWITCH OUTPUT, VOS (V)	
	$v_{\text {is }}$(V)	$\mathrm{l}_{\text {is }}(\mathrm{mA})$						
		$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	MIN	MAX
5	0	0.64	0.61	0.51	0.42	0.36		0.4
5	5	-0.64	-0.61	-0.51	-0.42	-0.36	4.6	
10	0	1.6	1.5	1.3	1.1	0.9		0.5
10	10	-1.6	-1.5	-1.3	-1.1	-0.9	9.5	
15	0	4.2	4	3.4	2.8	2.4		1.5
15	15	-4.2	-4	-3.4	-2.8	-2.4	13.5	

TYPICAL CHARACTERISTICS

Figure 2

TYPICAL ON-STATE RESISTANCE
VS

INPUT SIGNAL VOLTAGE (ALL TYPES)

Figure 4

Figure 3

ON-STATE RESISTANCE VS
INPUT SIGNAL VOLTAGE (ALL TYPES)

Figure 5

TYPICAL CHARACTERISTICS

Figure 6. Determination of $r_{o n}$ as a Test Condition for Control-Input High-Voltage ($\mathrm{V}_{\mathrm{IHC}}$) Specification

92CS - 22716
Figure 7. Channel On-State Resistance Measurement Circuit

Figure 8

TYPICAL CHARACTERISTICS

92CS -30921
Measured on Boonton capacitance bridge, model 75 a (1 MHz) test-fixture capacitance nulled out

Figure 10. Typical on Characteristics for One of Four Channels

92CS-30923
All unused terminals are connected to V_{SS}.
Figure 12. Propagation Delay Time Signal Input $\left(\mathrm{V}_{\text {is }}\right)$ to Signal Output $\left(\mathrm{V}_{\text {os }}\right)$

92CS-30922
All unused terminals are connected to V_{SS}.
Figure 11. Off-Switch Input or Output Leakage

All unused terminals are connected to V_{SS}.
Figure 13. Crosstalk-Control Input to Signal Output

TYPICAL CHARACTERISTICS

All unused terminals are connected to V_{SS}
Figure 15. Maximum Allowable Control-Input Repetition Rate
ground (turn-on) or on-state output level (turn-off).

Figure 14. Propagation Delay tpLH t ${ }_{\text {PHL }}$ Control-Signal Output

Measure inputs sequentially, to both VDD and VSS. Connect all unused inputs to either V_{DD} or V_{SS}. Measure control inputs only.

Figure 16. Input Leakage-Current Test Circuit

TYPICAL CHARACTERISTICS

Figure 17. Four-Channel PAM Multiplex System Diagram

TYPICAL CHARACTERISTICS

92CS - 30927
Figure 18. Bidirectional Signal Transmission Via Digital Control Logic

APPLICATION INFORMATION

In applications that employ separate power sources to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed $V_{D D} / R_{L}\left(R_{L}=\right.$ effective external load of the four CD4066B bilateral switches). This provision avoids any permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4066B.

In certain applications, the external load-resistor current can include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into terminals $1,4,8$, or 11 , the voltage drop across the bidirectional switch must not exceed 0.8 V (calculated from $r_{\text {on }}$ values shown).
No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals $2,3,9$, or 10 .

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

